MedBlog

Cancer

Q&A: Advances in Brain Tumor Treatment

Cancer

Multiple MRI scans showing cross-sections of the brain, with highlighted areas indicating abnormalities.
A groundbreaking imaging technique allows doctors to track a substance called 2HG that a subset of gliomas overproduces.

Doctors and researchers are making strides every day in the fight against brain cancer. Read on to learn about some of the new developments underway at UT Southwestern.

About one-third of brain tumors are gliomas — cancers that can long lie dormant, then transform into a fast-growing, deadly type called glioblastoma. At UT Southwestern’s Simmons Cancer Center, Peter O’Donnell Jr. Brain Institute, and Advanced Imaging Research Center, researchers have developed a groundbreaking imaging technique that allows doctors to track a substance called 2HG that a subset of gliomas, with IDH1/2 gene mutations, overproduces. We discussed this and other improvements in brain tumor care with neuro-oncologist Elizabeth Maher, M.D., Ph.D., and neurological surgeon Bruce Mickey, M.D.

A Global Approach

Scientists at UT Southwestern have been sharing their innovative method for tracking the brain cancer biomarker 2HG worldwide. For gliomas with certain (IDH) genetic mutations, 2HG can help reveal when the cancer is advancing and whether it’s responding to treatment. 

In 2012, Changho Choi, Ph.D., of the Advanced Imaging Research Center, Elizabeth Maher, M.D., Ph.D., and their colleagues published their magnetic resonance (MR) spectroscopy–based protocol to measure 2HG. Dr. Choi has since worked with MR physicists from academic medical centers on four continents to help them modify their spectroscopy protocols. And in 2016 the team published a study of 136 patients — 76 followed over time — showing the technique was an important clinical tool that could reliably track patients’ cancers.

The research was sparked by a National Institutes of Health (NIH) Challenge Grant that Dr. Maher led. The work had additional support from the NIH, Cancer Prevention and Research Institute of Texas, Annette Strauss Center for Neuro-oncology, AIRC, and UT Southwestern.